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Problem Statement 

Modelling complex aerodynamic data using conventional simulation methods poses 
a significant challenge for high-throughput processes. Multidimensional problems involving 
solutions to the Navier-Stokes equation require highly specialized tools and substantial 
computational resources. Running these simulations for large meshes demands even more 
time and resources, and remains exceptionally slow. Despite their accuracy, these methods 
are too inefficient for high-throughput generation of new aerodynamic data.  

With the advent of more sophisticated and powerful machine learning techniques, 
ML models present themselves as a powerful tool for applications like these. Uses include 
regression for predicting properties based upon input features, to the generation of new 
systems with desired properties. We utilize an autoencoder in tandem with an inverse 
neural network (INN) to generate new airfoil geometries from a list of desired aerodynamic 
parameters. The trained model shows promising results by generating new airfoil 
geometries that conform to desired performance metrics. 

Approach 

To obtain an ML model, a dataset must first be acquired. Our goal was to work with 
and generate new airfoils; we needed accurate aerodynamic data on a wide range of airfoil 
geometries and boundary conditions so that the model could learn a relationship between 
the aerodynamic behavior and airfoil contour. For this reason, the airfRANS dataset 
developed by Bonnet et al. (2022) was picked. This dataset consists of numerical 
simulations solving the incompressible steady-state Reynolds-Averaged Navier-Stokes 
equations over 2D airfoils in the subsonic regime with different angles of attack (AoA) 
(Bonnet et al., 2022). It comprises 1,000 simulations of the NACA 4 and 5-digit series 
airfoils with Reynolds numbers between 2 to 6 × 106 and AoA ranging from 5° to 15°. Each 
simulation in this dataset includes the following information: coordinates, global inlet 
velocities, distance to airfoil, normals, velocity, pressure per unit density, and turbulent 
kinematic viscosity. A subset of the entire dataset, the ‘scarce’ dataset was chosen, with 200 
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simulations in the training split. While this dataset significantly reduces the number of 
simulations available for training, the training times are much shorter.  

The next step in the process involves choosing and setting up a model. We decided to 
utilize an autoencoder for generative modeling, which was then coupled with an inverse 
neural network.  Both models were designed to work in tandem with each other; the 
autoencoder (decoder portion) was responsible for the generation of new airfoil 
geometries, while the INN handles converting aerodynamic properties into the latent space 
representation required as input to the decoder. The autoencoder has an input dimension 
of 18, a hidden dimension of 10, and a latent space dimension of six. The INN has an input 
dimension of 1,007, accounting for the scalar aerodynamic data (Cd, CL, CM, etc.; total of 7) 
and pressure distribution across the airfoil (total of 1,000). The first two hidden-layer 
dimensions were set to size 1,024, then the third was stepped down to 512, and finally to 
an output dimension of 6, the same as the latent space dimension of the decoder.  

 
Figure 1: Schematic diagram of the autoencoder used to get the latent space representation 
of the NACA airfoil's profile contour. 

 
Figure 2: Schematic diagram of the inverse neural network used to map aerodynamic 
parameters to the autoencoder’s latent space. 

To prepare the dataset for training, a preprocessing step was necessary. Each airfoil 
geometry in the airfRANS dataset simulations does not sample an identical number of 
points. This results in distinct airfoil geometries having a different number of points 
sampled. This was alleviated by using Class Shape Transformations (CST). CST is a method 
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that can be used to analytically represent surface coordinates of aerospace structures. This 
method was used here to convert the inhomogeneous simulation dataset sizes to a 
standardized representation containing 18 CST coefficients; all of the 200 training samples 
were thus converted to their CST equivalents and used for training the autoencoder. To 
train the INN, a similar challenge existed. A set of global parameters was used to describe 
the desirable aerodynamic properties of the airfoil. These features include the total drag 
and lift force on the airfoil; the drag, lift, and moment coefficients; the inlet velocity; and the 
angle of attack. The pressure acting on the airfoil is also an important metric that needs to 
be included to accurately describe the aerodynamic behavior. As stated above, since the 
simulations do not sample a homogeneous number of points, different airfoil geometries 
had different numbers of points with pressure values. This necessitated another 
preprocessing step. For pressure, having the mesh on the airfoil meant a better description 
of the behavior, and thus, it was not reduced using CST. Rather, all the pressure arrays were 
reshaped to have 1,000 data points per simulation. This meant interpolating for geometries 
with fewer simulation observations and dropping values for those with more simulation 
results. All values listed above as input can be obtained from either of three ways: directly 
from the dataset, by calling the class methods of the dataset’s Simulation class, or from the 
simulation file names.  At the end of the preprocessing steps, the inputs to both models 
were homogenized: the autoencoder accepted an input of 18 CST coefficients, and the 
inverse neural network accepted an input of the 7 global aerodynamic parameters 
combined with the pressure acting on the airfoil at 1,000 points.  

 
Figure 3: Velocity magnitude around the airfoil. The mesh is markedly denser near the 
airfoil surface. 
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The autoencoder and INN were then trained for 500 and 300 epochs, respectively. 
Both models utilized MSE loss and the Adam optimizer algorithm, with a learning rate of 1 
× 10-3. The inverse neural network was additionally given an L2 penalty of 1 × 10-4 to 
prevent the model from overfitting due to the small size of the training dataset. 

Results 

Before discussing results from the machine learning models, it was necessary to 
validate the CST approach taken to homogenize the inputs to the autoencoder.  

 
Figure 4: Comparison of an airfoil’s geometry, as described by datapoints and a CST 
reconstruction.  

Figure 4 shows the original geometry and a CST reconstruction of one of the airfoils 
in the dataset. As is evident, the CST reconstruction matches the original airfoil perfectly; 
however, the same cannot be said for all airfoil geometries. As shown by Figure 5, CST was 
unable to regenerate some airfoil geometries accurately. After comparing CST 
reconstructions of 200 airfoils with their originals, the autoencoder correctly matched the 
original airfoil’s shape in 75% observations, another 20% of samples showing an extremely 
good match, with the final 5% of samples displaying a poor reconstruction. As seen in 
Figure 4, Airfoil #70 shows a correct reconstruction, #52 is what we’re describing as an 
‘extremely good’ match, and airfoils #49 and #127 are a bad match. A discussion on the 
inconsistent reconstructions can be found in the upcoming section. 
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Figure 5: Training and validation loss curves for the autoencoder. 

 
Figure 6: Validating the autoencoder, referencing the 18 input CST coefficients with the 
decoded (reconstructed) 18 CST coefficients. 

Figure 5 shows the loss curves for the autoencoder. The final training and validation 
losses at the end of 500 epochs were observed to be 0.009951 and 0.01785, respectively. 
The trained autoencoder was then validated for its ability to reconstruct the CST 
coefficients from the training dataset. Figure 6 shows a comparison of the original and 
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autoencoder-predicted CST coefficients. Excellent agreement was observed between the 
original CST coefficients and the autoencoder’s predictions. 

After training the autoencoder, the inverse neural network was trained to map 
aerodynamic parameters to the autoencoder’s latent space. At the end of 300 epochs, a final 
training loss of 0.02541 was observed. The trained inverse neural network showed a final 
validation loss of 0.3106. 

 
Figure 7: Training and validation curve for the inverse neural network. 

With both components trained, an ideal airfoil was generated using the models. This 
was done by setting the inputs to the inverse neural network equal to the idealized global 
parameters within the dataset. The criteria for choosing the ideal parameters based on the 
observations in the dataset are discussed in depth later on. On passing these values through 
both models, the airfoil shown in Figure 8 was generated.  
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Figure 8: Proposed airfoil geometry from the idealized aerodynamic parameters and 
pressure distribution. The red curve shows the proposed airfoil, and the blue curve shows a 
standard NACA airfoil. 

An important caveat of using this approach is that the idealized aerodynamic 
parameters need to be chosen carefully. Assuming a well-trained model, it needs to be 
ensured that the ideal point lies within the three standard deviations of the training 
manifold within the latent space. Failure to ensure this leads to the generated airfoils being 
unrealistic. Principal component analysis (PCA) provides a way to ensure that the ideal 
point lies within the training manifold in the latest space. PCA can be performed on the 
latent space of the autoencoder to obtain the manifold of the airfoil geometries the model 
was trained on. Figure 9 below shows the PCA results for the airfoil geometry proposed 
above in Figure 8. 
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Figure 9: PCA of the latent space of the autoencoder and the predicted point (this is to 
check if the prediction lies on the same manifold). 

Discussion 

The choice of the smaller ‘scarce’ dataset was also influenced by the results 
delivered by this regime in the paper by Bonnet and coworkers. They found this regime 
performed better than other regimes for force coefficient predictions and showed the 
smallest MSE loss. To calculate these coefficients, an integration is performed over the 
airfoil’s surface; the lower number of observations in the ‘scarce’ dataset led to smaller loss 
accumulation over the entire dataset. However, given the smaller size of the dataset 
compared to the full dataset, the authors argued that MSE loss is not a good proxy for 
gauging the accuracy of the force coefficients (Bonnet et al., 2022). This contradictory 
behavior of the ‘scarce’ dataset warrants further investigation using different loss functions 
and hyperparameters to determine its usability in scenarios identical to the one in this 
project. 

Regarding the CST reconstructions, an interesting observation is that the majority of 
the inaccuracies occurred on the bottom surface of the airfoil, while the top surface showed 
vastly better agreement with the original airfoils in terms of max height and concavity. 
Since CST is an extremely complex field and its calibration requires specialized knowledge 
and procedures, given the scope of this project, we will refrain from a detailed discussion 
on this. 
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Figure 10: A CST reconstruction showcasing the differences in upper and lower airfoil 
surface generation. 

The validation loss on the trained inverse neural network was not able to converge 
with any variation in the number of hidden layers, hidden neurons, or the learning rate. The 
only changes available for the INN to improve its validation loss are a larger dataset and 
longer training. However, training for longer will likely result in an overfitted model, given 
the already small training loss. Thus, utilizing a larger dataset remains the only viable 
option here. Given the time and scope of this project, this was not tested here, but should be 
tested on future iterations nonetheless. 

The criteria for choosing ideal values for the inputs to the inverse neural network 
are as follows: minimum total drag and maximum lift force on the airfoil; minimum drag 
coefficient, maximum lift coefficient, and moment coefficient closest to -0.05; minimum 
inlet velocity; and AoA closest to 5°. The INN also requires the pressure distribution along 
the airfoil as an input; however, we could not find a reliable method of either choosing or 
generating this input data. Therefore, the pressure distribution from the first observation in 
the dataset was utilized.  

Additionally, an important caveat of using this approach is that the idealized 
aerodynamic parameters need to be chosen carefully. Assuming a well-trained model, it 
needs to be ensured that the ideal point lies within the three standard deviations of the 
training manifold within the latent space. Failure to ensure this leads to the generated 
airfoils being unrealistic. Some examples of the unrealistic airfoils we obtained are shown 
below in Figure 11. 
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Figure 11: Unrealistic airfoils generated by the autoencoder. 
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