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Problem Statement

Modelling complex aerodynamic data using conventional simulation methods poses
a significant challenge for high-throughput processes. Multidimensional problems involving
solutions to the Navier-Stokes equation require highly specialized tools and substantial
computational resources. Running these simulations for large meshes demands even more
time and resources, and remains exceptionally slow. Despite their accuracy, these methods
are too inefficient for high-throughput generation of new aerodynamic data.

With the advent of more sophisticated and powerful machine learning techniques,
ML models present themselves as a powerful tool for applications like these. Uses include
regression for predicting properties based upon input features, to the generation of new
systems with desired properties. We utilize an autoencoder in tandem with an inverse
neural network (INN) to generate new airfoil geometries from a list of desired aerodynamic
parameters. The trained model shows promising results by generating new airfoil
geometries that conform to desired performance metrics.

Approach

To obtain an ML model, a dataset must first be acquired. Our goal was to work with
and generate new airfoils; we needed accurate aerodynamic data on a wide range of airfoil
geometries and boundary conditions so that the model could learn a relationship between
the aerodynamic behavior and airfoil contour. For this reason, the airfRANS dataset
developed by Bonnet et al. (2022) was picked. This dataset consists of numerical
simulations solving the incompressible steady-state Reynolds-Averaged Navier-Stokes
equations over 2D airfoils in the subsonic regime with different angles of attack (AoA)
(Bonnet et al., 2022). It comprises 1,000 simulations of the NACA 4 and 5-digit series
airfoils with Reynolds numbers between 2 to 6 X 10° and AoA ranging from 5° to 15°. Each
simulation in this dataset includes the following information: coordinates, global inlet
velocities, distance to airfoil, normals, velocity, pressure per unit density, and turbulent
kinematic viscosity. A subset of the entire dataset, the ‘scarce’ dataset was chosen, with 200



simulations in the training split. While this dataset significantly reduces the number of
simulations available for training, the training times are much shorter.

The next step in the process involves choosing and setting up a model. We decided to
utilize an autoencoder for generative modeling, which was then coupled with an inverse
neural network. Both models were designed to work in tandem with each other; the
autoencoder (decoder portion) was responsible for the generation of new airfoil
geometries, while the INN handles converting aerodynamic properties into the latent space
representation required as input to the decoder. The autoencoder has an input dimension
of 18, a hidden dimension of 10, and a latent space dimension of six. The INN has an input
dimension of 1,007, accounting for the scalar aerodynamic data (Cq, C,, Cy, etc.; total of 7)
and pressure distribution across the airfoil (total of 1,000). The first two hidden-layer
dimensions were set to size 1,024, then the third was stepped down to 512, and finally to
an output dimension of 6, the same as the latent space dimension of the decoder.
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Figure 1: Schematic diagram of the autoencoder used to get the latent space representation
of the NACA airfoil's profile contour.
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Figure 2: Schematic diagram of the inverse neural network used to map aerodynamic
parameters to the autoencoder’s latent space.

To prepare the dataset for training, a preprocessing step was necessary. Each airfoil
geometry in the airfRANS dataset simulations does not sample an identical number of
points. This results in distinct airfoil geometries having a different number of points
sampled. This was alleviated by using Class Shape Transformations (CST). CST is a method



that can be used to analytically represent surface coordinates of aerospace structures. This
method was used here to convert the inhomogeneous simulation dataset sizes to a
standardized representation containing 18 CST coefficients; all of the 200 training samples
were thus converted to their CST equivalents and used for training the autoencoder. To
train the INN, a similar challenge existed. A set of global parameters was used to describe
the desirable aerodynamic properties of the airfoil. These features include the total drag
and lift force on the airfoil; the drag, lift, and moment coefficients; the inlet velocity; and the
angle of attack. The pressure acting on the airfoil is also an important metric that needs to
be included to accurately describe the aerodynamic behavior. As stated above, since the
simulations do not sample a homogeneous number of points, different airfoil geometries
had different numbers of points with pressure values. This necessitated another
preprocessing step. For pressure, having the mesh on the airfoil meant a better description
of the behavior, and thus, it was not reduced using CST. Rather, all the pressure arrays were
reshaped to have 1,000 data points per simulation. This meant interpolating for geometries
with fewer simulation observations and dropping values for those with more simulation
results. All values listed above as input can be obtained from either of three ways: directly
from the dataset, by calling the class methods of the dataset’s Simulation class, or from the
simulation file names. At the end of the preprocessing steps, the inputs to both models
were homogenized: the autoencoder accepted an input of 18 CST coefficients, and the
inverse neural network accepted an input of the 7 global aerodynamic parameters
combined with the pressure acting on the airfoil at 1,000 points.
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Figure 3: Velocity magnitude around the airfoil. The mesh is markedly denser near the
airfoil surface.



The autoencoder and INN were then trained for 500 and 300 epochs, respectively.
Both models utilized MSE loss and the Adam optimizer algorithm, with a learning rate of 1
X 103, The inverse neural network was additionally given an L2 penalty of 1 x 10 to
prevent the model from overfitting due to the small size of the training dataset.

Results

Before discussing results from the machine learning models, it was necessary to
validate the CST approach taken to homogenize the inputs to the autoencoder.
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Figure 4: Comparison of an airfoil’'s geometry, as described by datapoints and a CST
reconstruction.

Figure 4 shows the original geometry and a CST reconstruction of one of the airfoils
in the dataset. As is evident, the CST reconstruction matches the original airfoil perfectly;
however, the same cannot be said for all airfoil geometries. As shown by Figure 5, CST was
unable to regenerate some airfoil geometries accurately. After comparing CST
reconstructions of 200 airfoils with their originals, the autoencoder correctly matched the
original airfoil’s shape in 75% observations, another 20% of samples showing an extremely
good match, with the final 5% of samples displaying a poor reconstruction. As seen in
Figure 4, Airfoil #70 shows a correct reconstruction, #52 is what we’re describing as an
‘extremely good’ match, and airfoils #49 and #127 are a bad match. A discussion on the
inconsistent reconstructions can be found in the upcoming section.



Autoencoder: Training vs Validation Loss
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Figure 5: Training and validation loss curves for the autoencoder.
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Figure 6: Validating the autoencoder, referencing the 18 input CST coefficients with the
decoded (reconstructed) 18 CST coefficients.

Figure 5 shows the loss curves for the autoencoder. The final training and validation
losses at the end of 500 epochs were observed to be 0.009951 and 0.01785, respectively.
The trained autoencoder was then validated for its ability to reconstruct the CST
coefficients from the training dataset. Figure 6 shows a comparison of the original and



autoencoder-predicted CST coefficients. Excellent agreement was observed between the
original CST coefficients and the autoencoder’s predictions.

After training the autoencoder, the inverse neural network was trained to map
aerodynamic parameters to the autoencoder’s latent space. At the end of 300 epochs, a final
training loss of 0.02541 was observed. The trained inverse neural network showed a final
validation loss of 0.3106.
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Figure 7: Training and validation curve for the inverse neural network.

With both components trained, an ideal airfoil was generated using the models. This
was done by setting the inputs to the inverse neural network equal to the idealized global
parameters within the dataset. The criteria for choosing the ideal parameters based on the
observations in the dataset are discussed in depth later on. On passing these values through
both models, the airfoil shown in Figure 8 was generated.
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Figure 8: Proposed airfoil geometry from the idealized aerodynamic parameters and

pressure distribution. The red curve shows the proposed airfoil, and the blue curve shows a
standard NACA airfoil.

An important caveat of using this approach is that the idealized aerodynamic
parameters need to be chosen carefully. Assuming a well-trained model, it needs to be
ensured that the ideal point lies within the three standard deviations of the training
manifold within the latent space. Failure to ensure this leads to the generated airfoils being
unrealistic. Principal component analysis (PCA) provides a way to ensure that the ideal
point lies within the training manifold in the latest space. PCA can be performed on the
latent space of the autoencoder to obtain the manifold of the airfoil geometries the model

was trained on. Figure 9 below shows the PCA results for the airfoil geometry proposed
above in Figure 8.



PCA analysis on the latent space: z_train with z_pred overlay
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Figure 9: PCA of the latent space of the autoencoder and the predicted point (this is to
check if the prediction lies on the same manifold).

Discussion

The choice of the smaller ‘scarce’ dataset was also influenced by the results
delivered by this regime in the paper by Bonnet and coworkers. They found this regime
performed better than other regimes for force coefficient predictions and showed the
smallest MSE loss. To calculate these coefficients, an integration is performed over the
airfoil’s surface; the lower number of observations in the ‘scarce’ dataset led to smaller loss
accumulation over the entire dataset. However, given the smaller size of the dataset
compared to the full dataset, the authors argued that MSE loss is not a good proxy for
gauging the accuracy of the force coefficients (Bonnet et al., 2022). This contradictory
behavior of the ‘scarce’ dataset warrants further investigation using different loss functions
and hyperparameters to determine its usability in scenarios identical to the one in this
project.

Regarding the CST reconstructions, an interesting observation is that the majority of
the inaccuracies occurred on the bottom surface of the airfoil, while the top surface showed
vastly better agreement with the original airfoils in terms of max height and concavity.
Since CST is an extremely complex field and its calibration requires specialized knowledge
and procedures, given the scope of this project, we will refrain from a detailed discussion
on this.



Predicted airfoil from CST coefficients
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Figure 10: A CST reconstruction showcasing the differences in upper and lower airfoil
surface generation.

The validation loss on the trained inverse neural network was not able to converge
with any variation in the number of hidden layers, hidden neurons, or the learning rate. The
only changes available for the INN to improve its validation loss are a larger dataset and
longer training. However, training for longer will likely result in an overfitted model, given
the already small training loss. Thus, utilizing a larger dataset remains the only viable
option here. Given the time and scope of this project, this was not tested here, but should be
tested on future iterations nonetheless.

The criteria for choosing ideal values for the inputs to the inverse neural network
are as follows: minimum total drag and maximum lift force on the airfoil; minimum drag
coefficient, maximum lift coefficient, and moment coefficient closest to -0.05; minimum
inlet velocity; and AoA closest to 5°. The INN also requires the pressure distribution along
the airfoil as an input; however, we could not find a reliable method of either choosing or
generating this input data. Therefore, the pressure distribution from the first observation in
the dataset was utilized.

Additionally, an important caveat of using this approach is that the idealized
aerodynamic parameters need to be chosen carefully. Assuming a well-trained mode], it
needs to be ensured that the ideal point lies within the three standard deviations of the
training manifold within the latent space. Failure to ensure this leads to the generated
airfoils being unrealistic. Some examples of the unrealistic airfoils we obtained are shown
below in Figure 11.
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Figure 11: Unrealistic airfoils generated by the autoencoder.
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