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1. Element Matrices and Global System Assembly (10 points – Required) 

 
The geometry under consideration is a 6 mm-thick titanium plate with a central hole 

subjected to a distributed traction. The left edge of the plate is fully constrained. The 

objective is to develop a 2D finite element code to approximate the displacement and 

stress fields in the plate. The results are to be compared with those obtained from 

ABAQUS. The material properties of titanium are: Young's modulus E = 105 GPa and 

Poisson's ratio ν = 0.34. 

 

 
 

1. Plane Stress Assumption 

 

Plane stress is a simplifying assumption in which the stress component perpendicular to 

the plane—specifically, σz is considered zero. This is valid for thin plates where the out-

of-plane thickness T= 6mm, is small relative to the in-plane dimensions. Given this 

geometric configuration, the variation of stress through the thickness is minimal, making 

the plane stress assumption appropriate for this two-dimensional analysis. Accordingly, 

stress components acting normal to the analysis plane (xy plane) are assumed to be 

negligible. The material constitutive matrix [D] used in computing the element stiffness 

will be derived based on the plane stress formulation, which is given by, 

 

 
 

2. Element Stiffness Matrix 

 



Each element ‘e’ contributes a local stiffness matrix K(e) which captures the relationship 

between nodal displacements and internal forces for that element. It is given by: 

 
 

Where: 

• Ω(e)- Domain (area) of element ‘e’, 

• B: Strain-displacement matrix — it links nodal displacements to strain components 

using shape function derivatives, 

• D: Constitutive matrix from the previous section. 

•  

The term BTDB arises from the principle of virtual work or Galerkin formulation. 

 

3. Element Traction Force Vector 

 

When an external distributed load (traction) is applied to an edge of the plate, its effect 

must be translated into nodal forces. For element e that shares part of the loaded 

boundary: 

 
Where: 

• Γt
(e): The segment of the element’s boundary where the traction is applied. 

• N: Matrix of shape functions, which interpolate displacement across the element, 

• tˉ: Traction vector — here, a uniform surface traction of 30 N/mm2 along the right 

edge. 

This integral distributes the surface load into equivalent nodal forces. For instance, a 

uniform traction over a straight edge with two nodes will result in equal forces applied to 

both nodes. 

4. Global System Assembly 

 

• Once all element matrices K(e) and nodal force vectors f(e) are computed, they are 

assembled into the global system: 

 

K u = f 

 

Where: 

• K: Global stiffness matrix — formed by assembling each K(e) into a larger matrix 

according to the connectivity of elements to global nodes. 

• u: Global displacement vector — unknown nodal displacements to be solved. 

• f: Global force vector — includes contributions from applied loads and traction. 

Elements are connected at shared nodes. Contributions from each element are 

superimposed in the global matrix. This results in a large sparse system of equations. 



2. Model Setup Using a Commercial FEM Package (2D) (10 points – Required) 

 

In this task, a 2D analysis of the rectangular titanium plate is performed using ABAQUS 

software. The plate's dimensions and properties are provided as follows. 

 

• Length- 150 mm 

• Width- 50 mm 

• Radius of hole- 17mm 

• Youngs Modulus- 105000 N/mm2 

 

 

The 2D model of the rectangular plate with a central hole is created by choosing the 2D 

planar modelling space and applying the 'shell' base feature with the appropriate 

dimensions. 

 

 
 

After generating the 2D model of the plate, the material type was specified by assigning 

the Youngs Modulus and Poissons ratio of Titanium in the Materials tab.  

 



 
 

After defining the material properties, a solid homogeneous section was created for the 

model from the Section tab. The plane stress/strain thickness checkbox was selected with 

a unit value, thereby establishing plane stress behavior in the model, and the section was 

assigned to the part, causing it to turn green. 

 

                    



 
 

 
 

After this step, an independent instance is created under the Assembly tab. 



 
 

Under the Instance sub-tab, "Mesh" is selected. First, the area around the hole is meshed 

using the 'Seed Edges' option, with the number of elements in the local seed mesh set to 

350. Then, the global mesh size for the plate is specified as 0.7, which is applied to the 

entire plate structure. 

 
 

After this step, a static general step is created.  

 

                    



 

Next, the boundary conditions are applied under the 'BC' tab, of the 

displacement/rotation type, where the left side of the rectangular plate is fully 

constrained. This is achieved by specifying U1=U2=UR3=0. 

 

 

     
 

Once the boundary conditions are defined, a surface traction load with a magnitude of 30 

N/mm² is applied to the plate. The configuration of the plate with the applied boundary 

conditions and load is illustrated below. 

 

    

                                 
 



 
 

After this, a new job is created and successfully submitted, and the resulting output is 

shown below. 

 

Results 

 
The contours for Von Mises stress, displacement and strain in the rectangular plate is 

given below. 
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3. Numerical Quadrature Justification (10 points) 

In the finite element method, numerical quadrature is employed to compute the element 

stiffness matrices and nodal force vectors by evaluating integrals derived from the weak 

form of equilibrium. The selection of appropriate quadrature rules depends on the order of 

the shape functions and the expected polynomial order of the integrands. 

Element Type: T3 (Linear 3-Node Triangle) 

• Stiffness Matrix: 

A 1-point quadrature (centroid integration) is sufficient for constant strain triangle 

elements. 

Justification: The shape functions are linear, and their derivatives are constant. 

Therefore, the strain and stress are constant within the element. A single-point quadrature 

evaluates the integral exactly. 

Traction Forces: 

A 1-point Gauss quadrature on the 1D edge is sufficient for linearly varying shape 

functions. 

Element Type: Q4 (Bilinear 4-Node Quadrilateral) 

Stiffness Matrix: 

A 2×2 Gauss quadrature is used. 

Justification: The bilinear shape functions lead to linear strains and a quadratic 

integrand. A 2×2 rule exactly integrates up to degree 3 in 2D, which suffices. 

Traction Forces: 

A 2-point Gauss quadrature on element edges ensures exact integration of up to cubic 

polynomials. 

Element Type: T6 (Quadratic 6-Node Triangle) 

Stiffness Matrix: 

A 3-point Gauss quadrature is used. 

Justification: Quadratic shape functions produce linear to cubic strain terms. A 3-point 

triangle rule integrates polynomials up to degree 2 exactly, which is typically adequate. 

Traction Forces: 

A 2-point Gauss quadrature is used per curved edge segment. 

Element Type: Q8 (Quadratic 8-Node Quadrilateral) 

Stiffness Matrix: 

A 3×3 Gauss quadrature is used. 

Justification: Quadratic shape functions yield up to quartic terms in the integrand. A 3×3 

rule integrates up to degree 5 polynomials in 2D exactly. 

Traction Forces: 

A 3-point Gauss quadrature is used per edge. 



4. Least-Squares Stress Projection 

Least-squares stress projection was implemented to obtain a continuous stress field from the 

discontinuous element-wise stresses. This technique solves the following system: 

M σ̃ = b 

Where: 

• M is the mass matrix (lumped for efficiency) 

• σ̃ is the projected nodal stresses 

• b is the weighted average of element stresses 

The implementation follows these steps: 

1. Calculate element stresses at element centers 

2. Assemble the global mass matrix and right-hand side vectors 

3. Solve for projected nodal stresses 

4. Project nodal values back to elements for visualization 

The least-squares projection provides a smoother stress field by eliminating discontinuities at 

element boundaries, which is particularly important for accurate stress visualization around the 

hole where stress gradients are high. 

A representative contour plot of the σₓₓ normal stress for Q8 elements is shown below, 

demonstrating the smoothed stress field achieved through least-squares projection: 

 

 

 



                 Fig. Plot of normal stress (𝜎𝑥𝑥) for Q8 element type using least square projection  

 

 

 

 

 

 

 

 

 

 

 

 

 



5. Comparison of Element Types 

3-Node Triangle (T3) 

Von Mises Stress Contours: 

• Coarse Mesh (ey=10): Shows rough approximation with visible element boundaries 

• Medium Mesh (ey=20): Improved stress distribution but still exhibits artificial stress 

concentrations 

• Fine Mesh (ey=40): Better resolution of stress concentrations, but requires many 

elements 

Normal Stress Along AA': The normal stress plot along AA' shows a jagged profile for coarse 

meshes, gradually smoothing with mesh refinement. However, even the fine mesh fails to 

accurately capture the stress concentration at the hole boundary. 

                                              Fig. Model meshed with T3 element type 

 

 

 

 

 

 



 

 

Fig. Von mises and normal stress contour for T3 element type (with elements 10) 

 

 

Fig. Von mises and normal stress contour for T3 element type (with elements 20) 



 

Fig. Von mises and normal stress contour for T3 element type (with elements 40) 

 

 

4-Node Quadrilateral (Q4) 

Von Mises Stress Contours: 

• Coarse Mesh (ey=10): Shows improvement over T3 elements but still rough 

• Medium Mesh (ey=20): Improved stress contours with fewer artificial concentrations 

• Fine Mesh (ey=40): Good representation of stress field with reasonable element count 

Normal Stress Along AA': The normal stress profile shows smoother transitions compared to 

T3 elements, with significantly better performance at the same mesh density. The medium mesh 

provides adequate results for most engineering purposes. 

 

 

 

 



                                                          Fig. Model meshed with Q4 element type 

 

Fig. Von mises and normal stress contour for Q4 element type (with elements 10) 

 

 



 Fig. Von mises and normal stress contour for Q4 element type (with elements 20) 

Fig. Von mises and normal stress contour for Q4 element type (with elements 40) 

 

6-Node Triangle (T6) 

Von Mises Stress Contours: 

• Coarse Mesh (ey=10): Already provides good resolution of stress concentrations 



• Medium Mesh (ey=20): Excellent stress contours with clear definition of stress gradients 

• Fine Mesh (ey=40): Very high accuracy, approaching the converged solution 

Normal Stress Along AA': The quadratic shape functions allow the T6 element to better capture 

the curved hole boundary and the associated stress concentrations. The normal stress profile 

shows smooth transition, even for the coarse mesh. 

                                                  Fig. Model meshed with T6 element type 

Fig. Von mises and normal stress contour for T6 element type (with elements 10) 



 Fig. Von mises and normal stress contour for T6 element type (with elements 20) 

 

     Fig. Von mises and normal stress contour for T6 element type (with elements 40) 

 

 

8-Node Quadrilateral (Q8) 



Von Mises Stress Contours: 

• Coarse Mesh (ey=10): Excellent stress resolution even with few elements 

• Medium Mesh (ey=20): Very detailed stress contours with accurate gradients 

• Fine Mesh (ey=40): Highest accuracy with virtually no artificial stress patterns 

Normal Stress Along AA': The Q8 element provides the best performance among all element 

types, with smooth and accurate stress profiles even at coarse mesh densities. The quadratic 

shape functions excellently capture both the geometry of the curved hole and the stress gradients. 

 

                                                     Fig. Model meshed with Q8 element type 

 

 

 

 

 



            Fig. Von mises and normal stress contour for Q8 element type (with elements 10) 

 

        Fig. Von mises and normal stress contour for Q8 element type (with elements 20) 

 

 



            Fig. Von mises and normal stress contour for Q8 element type (with elements 40) 

Overall Comparison: 

1. Accuracy: Q8 > T6 > Q4 > T3 

2. Computational Efficiency: For comparable accuracy, higher-order elements (Q8, T6) 

require fewer elements than lower-order elements (Q4, T3) 

3. Geometry Representation: Quadratic elements (Q8, T6) better represent the curved hole 

boundary 

4. Stress Gradients: Higher-order elements more accurately capture steep stress gradients 

near the hole 



6.   Convergence Analysis 

 A convergence study was performed using Q8 elements to assess the maximum von Mises 

stress as a function of mesh refinement                                       

However, when regions containing stress singularities (particularly at the bottom and top of 

the hole where boundary conditions change abruptly) are excluded from the analysis, the 

model does converge with Q8 elements. This indicates that the stress solution is physically 

meaningful away from singular points. 

The convergence behavior supports the use of higher-order elements like Q8 for accurate 

stress prediction in regions of interest away from singularities. 

Without excluding regions of stress singularity, the model does not fully converge as the 

mesh is refined. The maximum stress continues to increase with mesh refinement, albeit at a 

decreasing rate. 

 

 

 

 



7.  3D Finite Element Analysis (15 points) 

A 3D finite element analysis was performed in ABAQUS to assess the validity of plane stress 

assumptions and determine if a full 3D analysis is necessary. 

Model Setup: 

• 3D solid elements (C3D20R: 20-node quadratic brick elements with reduced 

integration) 

• Same geometry, material properties, and loading conditions as the 2D model 

• Thickness: 6 mm with multiple elements through thickness 

1. Least-squares stress projection provides improved visualization and interpretation of 

stress fields 

For practical engineering analysis of similar structures, Q8 elements with medium mesh 

density provide a good balance between computational efficiency and accuracy. 

The contours in x and z direction are given below 

 

 



 

 

 

Comparison of Stress Components: 

The 3D analysis reveals significant σzz (out-of-plane) stress components, particularly near 

the hole boundary. The magnitude of σzz reaches approximately 15% of the maximum in-

plane stresses, indicating that the plane stress assumption is not entirely valid for this 

problem. 

Comparison of Strain Components: 

The 3D model shows that out-of-plane strains (εzz) are non-negligible near the hole, 

especially at the stress concentration points. This further confirms that a full 3D analysis is 

beneficial for accurate prediction of the structural response. 

Assessment: 

Based on the comparison of stress and strain components, a 3D analysis is required for this 

problem because the stresses in the z-direction (σzz) are not negligible. While a 2D plane 

stress model can provide reasonable approximations for preliminary design, the 3D analysis 

reveals important aspects of the stress state that cannot be captured by 2D approximations. 



The 3D analysis provides a more complete picture of the stress distribution, particularly at the 

stress concentration points around the hole, which is crucial for accurate fatigue life 

prediction and structural integrity assessment of the titanium plate. 

Conclusion 

The finite element analysis of the titanium plate with a center hole reveals that: 

1. Higher-order elements (Q8, T6) significantly outperform lower-order elements in 

terms of accuracy and efficiency 

2. The model exhibits stress singularities that affect convergence 

3. A 3D analysis is necessary for complete characterization of the stress state 

4. The maximum von Mises stress (approximately 770 MPa) occurs at the sides of the 

hole 

 


