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REPORT

Completed by- Reuben Kukar and Vishavjit Singh Khinda

1. Element Matrices and Global System Assembly (10 points — Required)

The geometry under consideration is a 6 mm-thick titanium plate with a central hole
subjected to a distributed traction. The left edge of the plate is fully constrained. The
objective is to develop a 2D finite element code to approximate the displacement and
stress fields in the plate. The results are to be compared with those obtained from
ABAQUS. The material properties of titanium are: Young's modulus E = 105 GPa and
Poisson's ratio v = 0.34.
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1. Plane Stress Assumption

Plane stress is a simplifying assumption in which the stress component perpendicular to
the plane—specifically, . is considered zero. This is valid for thin plates where the out-
of-plane thickness T= 6mm, is small relative to the in-plane dimensions. Given this
geometric configuration, the variation of stress through the thickness is minimal, making
the plane stress assumption appropriate for this two-dimensional analysis. Accordingly,
stress components acting normal to the analysis plane (xy plane) are assumed to be
negligible. The material constitutive matrix [D] used in computing the element stiffness
will be derived based on the plane stress formulation, which is given by,

2. Element Stiffness Matrix




Each element ‘e’ contributes a local stiffness matrix K© which captures the relationship
between nodal displacements and internal forces for that element. It is given by:

K [ B'DB O
Je)

Where:

e Q©- Domain (area) of element ‘e’,

e B: Strain-displacement matrix — it links nodal displacements to strain components
using shape function derivatives,

e D: Constitutive matrix from the previous section.

The term BTDB arises from the principle of virtual work or Galerkin formulation.

3. Element Traction Force Vector

When an external distributed load (traction) is applied to an edge of the plate, its effect
must be translated into nodal forces. For element e that shares part of the loaded
boundary:

fle) N tdr

el

Where:

e I'(©: The segment of the element’s boundary where the traction is applied.

e N: Matrix of shape functions, which interpolate displacement across the element,

e t: Traction vector — here, a uniform surface traction of 30 N/mm? along the right
edge.

This integral distributes the surface load into equivalent nodal forces. For instance, a
uniform traction over a straight edge with two nodes will result in equal forces applied to
both nodes.

4. Global System Assembly

e Once all element matrices K and nodal force vectors f© are computed, they are
assembled into the global system:

Where:

« K: Global stiffness matrix — formed by assembling each K into a larger matrix
according to the connectivity of elements to global nodes.

e u: Global displacement vector — unknown nodal displacements to be solved.

o f: Global force vector — includes contributions from applied loads and traction.

Elements are connected at shared nodes. Contributions from each element are
superimposed in the global matrix. This results in a large sparse system of equations.



2. Model Setup Using a Commercial FEM Package (2D) (10 points — Required)

In this task, a 2D analysis of the rectangular titanium plate is performed using ABAQUS
software. The plate's dimensions and properties are provided as follows.

e Length- 150 mm

e  Width- 50 mm

e Radius of hole- 17mm

e Youngs Modulus- 105000 N/mm?

The 2D model of the rectangular plate with a central hole is created by choosing the 2D
planar modelling space and applying the 'shell' base feature with the appropriate
dimensions.

After generating the 2D model of the plate, the material type was specified by assigning
the Youngs Modulus and Poissons ratio of Titanium in the Materials tab.



<> Edit Material X

Name: Material-1

Description:
: 7

Material Behaviors

General Mechanical Thermal Electrical/Magnetic  Other v

Elastic

Type: | Isotropic I ¥ Suboptions
[[] Use temperature-dependent data

Number of field variables: 0=

Moduli time scale (for viscoelasticity): | Long-term 4

[[] No compression

[C] No tension
Data
Young's Poisson's
Modulus Ratio

1 105000 0.34

0K Cancel

After defining the material properties, a solid homogeneous section was created for the
model from the Section tab. The plane stress/strain thickness checkbox was selected with
a unit value, thereby establishing plane stress behavior in the model, and the section was
assigned to the part, causing it to turn green.

4 Create Section X
P .

Name: 5~ Edit Section X
Calmpnyii Name: Section-1
© So Homogeneous Type:  Solid, Homogeneous
O Shell Generalized plane strain

i i3
O Beam | Eulerian Material: Material-1 v
O Other Composite

[/ Plane stress/strain thickness: i

Cancel oK Cancel



= Edit Section Assignment X

Region

Region: Set-2

Section

Section: Section-1 v ig

Note: List contains only sections
applicable to the selected regions.

Type: Solid, Homogeneous

Material: Titanium

Thickness
Assignment: (® From section (O From geometry

OK Cancel

After this step, an independent instance is created under the Assembly tab.



£ Create Instance X

Name:
@® Auto O Specify:
Create instances from:
@ Parts O Models
Parts

Instance Type

(O Dependent (mesh on part)

@EIndependent (mesh on instance);

Note: To change a Dependent instance's
mesh, you must edit its part's mesh.

[] Auto-offset from other instances

Apply Cancel

Under the Instance sub-tab, "Mesh" is selected. First, the area around the hole is meshed
using the 'Seed Edges' option, with the number of elements in the local seed mesh set to

350. Then, the global mesh size for the plate is specified as 0.7, which is applied to the
entire plate structure.

After this step, a static general step is created.

+ crote st x

Name: Name: Step-1

Type: Static, General
Insert new step after

Basic Incrementation  Other
Description: | S
Time period: | 1
@ off
v (This setting controls the inclusion of nonlinear effects
Nigeom:

(Qon oflarge displacements and affects subsequent steps.)

Automatic stabilization: | None M
Procedure type: | General N~

[ Include adiabatic heating effects
Dynamic, Temp-disp, Explicit o

Geostatic

Heat transfer

Mass diffusion

Soils

Static, Riks ~v
< >

Cancel



Next, the boundary conditions are applied under the 'BC' tab, of the
displacement/rotation type, where the left side of the rectangular plate is fully
constrained. This is achieved by specifying U1=U2=UR3=0.

= Create Boundary Condition X | = Edit Boundary Condition X

Name: Name: BC-1

Step: | Step-1 0 Type:  Displacement/Rotation
Step: Step-1 (Static, General)

Procedure: Static, General

Region: Set-2
Category Types for Selected Step
@® Mechanical Symmetry/Antisymmetry/Encastre Cs¥s: (Glebal) [y A
O Mgt WP J
ity/Angular velocity —
O Other Velocity/Ang :
Connector displacement Ut: 0
Connector velocity u2: 0
1 UR3: 0 radians
Amplitude: | (Ramp) e PV

Note: The displacement value will be
maintained in subsequent steps.

Cancel 0K Cancel

Once the boundary conditions are defined, a surface traction load with a magnitude of 30
N/mm? is applied to the plate. The configuration of the plate with the applied boundary
conditions and load is illustrated below.

= Create Load Dl = Edit Load ~

Name: Load-1

Name: Load-1
Type: Surface traction

Step: | Step-1 V Step:  Step-1 (Static, General)
Procedure: Static, General Region: S Sixtl
Category Types for Selected Step Distribution: | Uniform M
@® Mechanical Concentrated force A Traction: | Shear E
Moment Direction
A Pressure Vector before projection: (0,-1,0) Q
| Shell edge load CSYS: | Global ~
| E e
O Electrical/Magnetic Pipe pressure
lass diffusio Body force Magnitude: |30
O Other Line load Amplitude: | (Ramp) N P
Gravity
Bolt load v Traction is defined per unit  deformed area ~

Shear traction will always follow the rotation

Continue... Cancel oK Cancel



After this, a new job is created and successfully submitted, and the resulting output is
shown below.

Results

The contours for Von Mises stress, displacement and strain in the rectangular plate is
given below.

S, Mises

(Avg: 759%)
+7.766e+02
+7.120e+02

+1.313e+00

L.

ODB: Job-1.0db Abaqus/Standard 2023 Sun May 04 19:02:45 Pacific Daylight Time 2025

Step: Step-1, S

Increment 1: Step Time = 1,000

Primary Var: S, Mises

Deformed Var: U Deformation Scale Factor: +7.146e+00

(Von Misses Stress in MPa)



U, Magnitude
+2.143e+00
+1.965e+00
+1.786e+00
+1.607e+00
+1.429e+00
+1.250e+00
+1.072e+00
+8.930e-01
+7.144e-01
+5.358e-01
+3.572e-01
+1.786e-01
+0.000e+00

©ODB: Job-1.0db Abaqus/Standard 2023 Sun May 04 19:02:45 Pacific Daylight Time 2025

1 Step: Step-1, S
= X ncrernent  1: Step Time =  1.000
Primary Var: U, Magnitude
Deformed Var: U Deformation Scale Factor: +7.1462+00
Increment 1: Step lime = 1l.uuu
Primary Var: E, Max. In-Plane Principal
Deformed Var: U Deformation Scale Factor: +7.1462+00

(Displacement in mm)

E, Max. In-Plane Principal

(Aug: 759%)
+7.494e-03
+6.866e-03
+6.239e-03
+5.611e-03
+4.983e-03
+4.356e-03
+3.728e-03
+3.100e-03
+2,473e-03
+1.845e-03
+1.217e-03
+5.898e-04
-3.791e-05

ODB: Job-1.0db  Abaqus/Standard 2023 Sun May 04 19:02:45 Pacific Daylight Time 2025

I . Step: Step-1, §
¥ Increment 1: Step Time = 1,000

Primary Var: E, Max. In-Plane Principal

Deformed Var: U Deformation Scale Factor: +7.146e+00
Increment 1: Step hime = 1,UUU
Prirmary Var: E, Max, In-Plane Principal
Deformed Var: U Deformation Scale Factor: +7.146e+00

Strain)




3. Numerical Quadrature Justification (10 points)

In the finite element method, numerical quadrature is employed to compute the element
stiffness matrices and nodal force vectors by evaluating integrals derived from the weak
form of equilibrium. The selection of appropriate quadrature rules depends on the order of
the shape functions and the expected polynomial order of the integrands.

Element Type: T3 (Linear 3-Node Triangle)

o Stiffness Matrix:
A 1-point quadrature (centroid integration) is sufficient for constant strain triangle
elements.

Justification: The shape functions are linear, and their derivatives are constant.
Therefore, the strain and stress are constant within the element. A single-point quadrature
evaluates the integral exactly.

Traction Forces:
A 1-point Gauss quadrature on the 1D edge is sufficient for linearly varying shape
functions.

Element Type: Q4 (Bilinear 4-Node Quadrilateral)

Stiffness Matrix:
A 2x2 Gauss quadrature is used.

Justification: The bilinear shape functions lead to linear strains and a quadratic
integrand. A 2x2 rule exactly integrates up to degree 3 in 2D, which suffices.

Traction Forces:
A 2-point Gauss quadrature on element edges ensures exact integration of up to cubic
polynomials.

Element Type: T6 (Quadratic 6-Node Triangle)

Stiffness Matrix:
A 3-point Gauss quadrature is used.

Justification: Quadratic shape functions produce linear to cubic strain terms. A 3-point
triangle rule integrates polynomials up to degree 2 exactly, which is typically adequate.

Traction Forces:
A 2-point Gauss quadrature is used per curved edge segment.

Element Type: O8 (Quadratic 8-Node Quadrilateral)

Stiffness Matrix:
A 3%3 Gauss quadrature is used.

Justification: Quadratic shape functions yield up to quartic terms in the integrand. A 3x3
rule integrates up to degree 5 polynomials in 2D exactly.

Traction Forces:
A 3-point Gauss quadrature is used per edge.



4. Least-Squares Stress Projection

Least-squares stress projection was implemented to obtain a continuous stress field from the
discontinuous element-wise stresses. This technique solves the following system:

Mo=b
Where:
e M is the mass matrix (lumped for efficiency)
« G is the projected nodal stresses
e b is the weighted average of element stresses
The implementation follows these steps:
1. Calculate element stresses at element centers
2. Assemble the global mass matrix and right-hand side vectors
3. Solve for projected nodal stresses
4. Project nodal values back to elements for visualization

The least-squares projection provides a smoother stress field by eliminating discontinuities at
element boundaries, which is particularly important for accurate stress visualization around the
hole where stress gradients are high.

A representative contour plot of the 6 normal stress for Q8 elements is shown below,
demonstrating the smoothed stress field achieved through least-squares projection:
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Fig. Plot of normal stress (o,,) for Q8 element type using least square projection



5. Comparison of Element Types
3-Node Triangle (T3)

Von Mises Stress Contours:

e Coarse Mesh (ey=10): Shows rough approximation with visible element boundaries

e Medium Mesh (ey=20): Improved stress distribution but still exhibits artificial stress

concentrations

e Fine Mesh (ey=40): Better resolution of stress concentrations, but requires many

elements

Normal Stress Along AA': The normal stress plot along AA' shows a jagged profile for coarse
meshes, gradually smoothing with mesh refinement. However, even the fine mesh fails to

accurately capture the stress concentration at the hole boundary.

50 -

40 —

30 —

£ AEORAG

20

Y (mm)

-20

-30 —

40 |

-50

X (mm)
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Fig. Von mises and normal stress contour for T3 element type (with elements 20)
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Fig. Von mises and normal stress contour for T3 element type (with elements 40)

4-Node Quadrilateral (Q4)

Von Mises Stress Contours:
e Coarse Mesh (ey=10): Shows improvement over T3 elements but still rough
e Medium Mesh (ey=20): Improved stress contours with fewer artificial concentrations
e Fine Mesh (ey=40): Good representation of stress field with reasonable element count

Normal Stress Along AA': The normal stress profile shows smoother transitions compared to
T3 elements, with significantly better performance at the same mesh density. The medium mesh
provides adequate results for most engineering purposes.
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Fig. Von mises and normal stress contour for Q4 element type (with elements 10)



Y (mm)

-20

Y (mm)

-30 -

50 -

50—

40~

30 -

von Mises Stress:

20

-40 -

50

40

30

Q4
ey =
20 £ AEORA R
700
Normal Stress along AA":
600 Q4
L] ey =
20
ITTT 800 . . . . ; . . .
Pl - 500
600
400 g 400
& ™ 200
o
- 300 E
T T
i 8
n -200
200
-400
100 -600
L L L L L L L ’BDO ! ! ! ! ! ! : ! !
60 40 20 0 20 40 60 -25 -20 -15 -10 -5 0 5 10 15 20 25
2o Y-coordinate along AA' section (mm)

Fig. Von mises and normal stress contour for Q4 element type (with elements 20)
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Fig. Von mises and normal stress contour for Q4 element type (with elements 40)

6-Node Triangle (T6)
Von Mises Stress Contours:

e Coarse Mesh (ey=10): Already provides good resolution of stress concentrations
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Medium Mesh (ey=20): Excellent stress contours with clear definition of stress gradients

Fine Mesh (ey=40): Very high accuracy, approaching the converged solution

Normal Stress Along AA': The quadratic shape functions allow the T6 element to better capture
the curved hole boundary and the associated stress concentrations. The normal stress profile
shows smooth transition, even for the coarse mesh.
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Fig. Von mises and normal stress contour for T6 element type (with elements 10)
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Fig. Von mises and normal stress contour for T6 element type (with elements 40)

8-Node Quadrilateral (Q8)



Von Mises Stress Contours:
e Coarse Mesh (ey=10): Excellent stress resolution even with few elements
e Medium Mesh (ey=20): Very detailed stress contours with accurate gradients
o Fine Mesh (ey=40): Highest accuracy with virtually no artificial stress patterns

Normal Stress Along AA': The Q8 element provides the best performance among all element
types, with smooth and accurate stress profiles even at coarse mesh densities. The quadratic
shape functions excellently capture both the geometry of the curved hole and the stress gradients.
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Fig. Model meshed with Q8 element type
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Fig. Von mises and normal stress contour for Q8 element type (with elements 10)
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Fig. Von mises and normal stress contour for Q8 element type (with elements 20)
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Fig. Von mises and normal stress contour for Q8 element type (with elements 40)
Overall Comparison:
1. Accuracy: Q8 >T6>Q4>T3

2. Computational Efficiency: For comparable accuracy, higher-order elements (Q8, T6)
require fewer elements than lower-order elements (Q4, T3)

3. Geometry Representation: Quadratic elements (Q8, T6) better represent the curved hole
boundary

4. Stress Gradients: Higher-order elements more accurately capture steep stress gradients
near the hole



6. Convergence Analysis

A convergence study was performed using Q8 elements to assess the maximum von Mises
stress as a function of mesh refinement

However, when regions containing stress singularities (particularly at the bottom and top of
the hole where boundary conditions change abruptly) are excluded from the analysis, the
model does converge with Q8 elements. This indicates that the stress solution is physically
meaningful away from singular points.

The convergence behavior supports the use of higher-order elements like Q8 for accurate
stress prediction in regions of interest away from singularities.

Without excluding regions of stress singularity, the model does not fully converge as the
mesh is refined. The maximum stress continues to increase with mesh refinement, albeit at a
decreasing rate.

Stress Convergence with Mesh Refinement
1200 T T T T

1200 F

1100 F

1000 F

hMaximum Stress S [MPa]

o900

a 5000 10000 15000 20000 25000 30000
MNumber of Elements (NE)



7. 3D Finite Element Analysis (15 points)

A 3D finite element analysis was performed in ABAQUS to assess the validity of plane stress
assumptions and determine if a full 3D analysis is necessary.

Model Setup:
e 3D solid elements (C3D20R: 20-node quadratic brick elements with reduced
integration)
o Same geometry, material properties, and loading conditions as the 2D model
e Thickness: 6 mm with multiple elements through thickness
1.

Least-squares stress projection provides improved visualization and interpretation of

stress fields

For practical engineering analysis of similar structures, Q8 elements with medium mesh
density provide a good balance between computational efficiency and accuracy.

The contours in x and z direction are given below

S, 811

(Avg: 759%)
+7.756e+02
+6.473e+02
+5.190e+02
+3.908e+02
+2.625e+02
+1.342e+02
+5.957e+00
-1.223e+02
-2.506e+02
-3.788e+02
-5.071e+02
-6.354e+02
-7.636e+02

v

F4

8, 813

(Avg: 759%)
+9.547e+01
+7.956e+01
+6.365e+01
+4.773e+01
+3.182e+01
+1.591e+01
+0.000e+00
-1.591e+01
-3.182e+01
-4,.773e+01
-6.365e+01
-7.956e+01
-9.547e+01

Y ODB: Job-1.0db  Abaqus/Standard 2023

X Step: Step-1
Increment 1: Step Time = 1,000

ODB: Job-1.0db Abaqus/Standard 2023 Sun May 04 22:38:59 Pacific Daylight Time 2025

Step: Step-1

Increment 1: Step Time = 1,000
Primary Var: §, S11

Deformned Var: U Deformation Scale Factor: +7.163e+00

Sun May 04 22:38:59 Pacific Daylight Time 2025

z Primary Var: S, 513
Deformed Var: U Deformation Scale Factor: +7.163e+00



8, 823
(Avg: 759%)

-31310e+00
-4.138e+00
-4.365e+00

Y ODB: Job-1.0db  Abaqus/Standard 2023 Sun May 04 22:38:59 Pacific Daylight Time 2025
X Step: Step-1
Increment 1: Step Time = 1,000
z Primary Var: S, 523

Deformed Var: U Deformation Scale Factor: +7.163e+00

g, 833

(Avg: 75%)
+2,338e+02
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+3.541e+00
-3.484e+01
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Y ODB: Job-1.0db  Abaqus/Standard 2023 Sun May 04 22:38:59 Pacific Daylight Time 2025

Step: Step-1

X
Q Increment 1: Step Time = 1,000
z Primary Var: S, S33

Deformed Var: U Deformation Scale Factor: +7.163e+00

Comparison of Stress Components:

The 3D analysis reveals significant 6zz (out-of-plane) stress components, particularly near
the hole boundary. The magnitude of 6zz reaches approximately 15% of the maximum in-

plane stresses, indicating that the plane stress assumption is not entirely valid for this
problem.

Comparison of Strain Components:

The 3D model shows that out-of-plane strains (€zz) are non-negligible near the hole,
especially at the stress concentration points. This further confirms that a full 3D analysis is
beneficial for accurate prediction of the structural response.

Assessment:

Based on the comparison of stress and strain components, a 3D analysis is required for this
problem because the stresses in the z-direction (6zz) are not negligible. While a 2D plane
stress model can provide reasonable approximations for preliminary design, the 3D analysis
reveals important aspects of the stress state that cannot be captured by 2D approximations.



The 3D analysis provides a more complete picture of the stress distribution, particularly at the
stress concentration points around the hole, which is crucial for accurate fatigue life
prediction and structural integrity assessment of the titanium plate.

Conclusion
The finite element analysis of the titanium plate with a center hole reveals that:

1. Higher-order elements (Q8, T6) significantly outperform lower-order elements in
terms of accuracy and efficiency

2. The model exhibits stress singularities that affect convergence
3. A 3D analysis is necessary for complete characterization of the stress state

4. The maximum von Mises stress (approximately 770 MPa) occurs at the sides of the
hole



