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Introduction 

Trains are one of the primary means of land transport in the world, as they are energy efficient 

and reach high speeds compared to their counterparts. However, Conventional trains waste 

considerable energy due to the friction between the wheels and the track. To reduce this energy 

loss, Magnetic Levitation Trains were invented, where compartments are elevated above the 

tracks with no physical contact using magnetism principles.  

Due to the nature of this system and its dynamics, it is not fully stable on its own. Therefore, 

to successfully implement this levitation idea on the trains, numerous control techniques are 

used. There are three main dynamics in this system which can be decoupled for simplicity. First 

is levitation, where an electromagnet is used either to repel or attract the train body to levitate 

it above tracks. Second is propulsion, where linear induction motors are used to propel the 

train. Third is guidance, where opposite pole magnets on the sides keep the train centered in 

the lateral direction. Figure 1 below shows all three dynamics with respect to the train 

compartments: 

 

Figure 1. Dynamics of a Maglev Train [1][2] 

In this project, researchers focused on the levitation dynamics (vertical axis). In this axis, an 

electromagnet is attached to the undercarriage of the train and a permanent magnet to the track; 
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an upward magnetic force is generated to levitate the compartment; this force is dependent on 

the input current and the distance between the magnets. Using a specific current input, the 

compartment can be levitated precisely above a certain height. Subsequent sections discuss this 

single-input single-output (SISO) system’s modeling, analysis of properties, controller design 

and simulation, and conclusions and discussions. 

Modeling 

The first step in modeling this system is representing it as a free-body diagram (FBD). Figure 

2 shows the FBD of the system; there are two forces in the vertical direction: the force of 

gravity (Fg =mg) and the opposing magnetic force (Fm). Fm is given by this formula: 

𝐹𝑚 = 
𝑁2𝐼2𝜇∘𝐴

4𝑍2
 = 

𝐾𝐼2

𝑍2
 ,    where K = 

𝑁2𝜇∘𝐴

4
 [3] 

N  →   No of turns in electromagnet coil 

𝜇∘  →   Permeability of free space 

I   →    Current flowing through electromagnet coil 

A   →    Effective Area of the magnet pole face 

Z   →    Air gap distance between train and guideway 

 

Figure 2. Levitation Axis FBD [3] 

Equations of motion were derived from the FBD using Newton’s second law: 

∑𝐹 = ma; m𝑧̈ = 
𝐾𝐼2

𝑍
 – mg 

Subsequently, the state space model was constructed by taking: 𝑋1 = Z, 𝑋2 = 𝑍̇, & input u = I  
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𝑋̇ = [
𝑋̇1
𝑋̇2
] = [

𝑋2
𝐾𝑢2

𝑚𝑋1
2 − 𝑔

] =   
𝑓1(𝑋1, 𝑋2, 𝑢)
𝑓1(𝑋1, 𝑋2, 𝑢)

 

Since the resulting state-space representation is highly non-linear, the system was linearized 

about an equilibrium levitation point using Taylor series expansion: 

𝑋̇̃ = 𝑓(𝑋̃, 𝑢̃) = 0, Therefore,  𝑋̃2 = 0 

𝐾𝑢2

𝑚𝑋̃1
2 

 - g = 0           →        𝑢̃2 = 
𝑚𝑋̃1

2

𝐾
 

Let  𝑢̃ = 𝐼∘,          𝑋̃ = [𝑋̃1
0
],        Let 𝑋̃1 = 𝑍∘ 

𝐼∘
2 = 

𝑚𝑔𝑍∘
2

𝐾
  ( Relation between equilibrium current 𝐼∘ and air gap 𝑍∘) 

A = [

𝜕𝑓1

𝜕𝑋1

𝜕𝑓1

𝜕𝑋2
𝜕𝑓2

𝜕𝑋1

𝜕𝑓2

𝜕𝑋2

]

(𝑢, 𝑋̃)

                    B = [

𝜕𝑓1

𝜕𝑢
𝜕𝑓2

𝜕𝑢

]

(𝑢,̃ 𝑋̃)

 

𝑋̇𝛿 =  [
0 1

−2𝐾𝐼∘
2

𝑚𝑍∘
3 0]

⏟      
𝐴

𝑋𝛿   +    [
0
2𝐾𝐼∘

𝑚𝑍∘
2
]

⏟  
𝐵

 u, 𝑦𝛿 =  [1    0]⏟  
𝐶

 𝑋𝛿   +    [0]⏟
𝐷

 u 

Analysis of properties 

After the sate-space modeling, important properties of the system, including controllability, 

observation, internal stability, and BIBO stability, were determined as follows: 

Controllability                                                             Observability                                                               

                        P = [𝐵    𝐴𝐵]                                                                  Q = [
𝐶
𝐶𝐴
] 

               P = [𝐵    𝐴𝐵] = [
0

2𝐾𝐼∘

𝑚𝑍∘
2

2𝐾𝐼∘

𝑚𝑍∘
2 0

]                                         Q = [
𝐶
𝐶𝐴
] =  [

1 0
0 1

] 

                       det(P) = - 
4𝐾2𝐼∘

2

𝑚2𝑍∘
4 ≠ 0                                                    det(Q) = 1 ≠ 0   
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Since the determinant of both P and Q matrices is not equal to zero, the system is both 

controllable and observable. The internal stability of the system was determined using 

Lyapunov’s indirect method, and the BIBO stability was determined using the roots of the 

transfer function as follows: 

Lyapunov’s Indirect Method     →     check the real part of the eigenvalues of system matrix A 

|𝜆 – I A| = 0    →      |
𝜆 −1

2𝐾𝐼∘
2

𝑚𝑍∘
3 𝜆 |  =  0        →      λ = ±𝑗√

2𝐾𝐼∘
2

𝑚𝑍∘
3  ,  (A.M. = G.M. = 1) for each λ 

Real part of eigenvalue is zero   →   The linearized model is marginally stable  →  Also, the 

stability of the actual non-linear system is unknown by this method. 

BIBO Stability: The open Loop transfer function G(s) for the state space system is given by: 

G(s) = C (sI – A)−1B + D 

G(s) = C (sI – A)−1B = [1   0] . 
1

𝑠2+ 
2𝐾𝐼∘

2

𝑚𝑧∘
3

 [
𝑠 1

−
2𝐾𝐼∘

2

𝑚𝑧∘
3 𝑠] . [

0
2𝐾𝐼∘

𝑚𝑧∘
2
] = 

2𝐾𝐼∘

𝑚𝑧∘
2

𝑠2 + 
2𝐾𝐼∘

2

𝑚𝑧∘
3

 

s = ±𝑗√ 
2𝐾𝐼∘

2

𝑚𝑧∘
3  

Since the transfer function’s poles have no real parts, the system is not BIBO stable. 

Controller Design and Simulation Results 

Since the linearized system is marginally stable, there needs to be a state feedback control that 

actively controls the system and stabilizes it, given certain design specifications. As learned in 

the coursework, a PD controller was chosen. The first step in designing a PD controller is 

determining the open loop dynamic response of the system, which is as follows: 

Open loop transfer function G(s) =  

2𝐾𝐼∘

𝑚𝑧∘
2

𝑠2 + 
2𝐾𝐼∘

2

𝑚𝑧∘
3

, 𝑦𝑓𝑖𝑛𝑎𝑙 = G (0) =  
𝑍∘

𝐼∘
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Standard form, G(s) =    
𝜔𝑛
2

𝑠2+2𝜁𝜔𝑛𝑠+ 𝜔𝑛
2, ζ = 0, 𝜔𝑛 = √

2𝐾𝐼∘
2

𝑚𝑧∘
3  

Percent Overshoot:    %OS = 𝑒

(
−𝜋𝜁

√1− 𝜁2
)

 ×  100% =  𝑒0 ×  100% = 100%  

Settling Time:  𝑇𝑠 = 
4

𝜁𝜔𝑛
  = ∞ (system never settles) 

For closed loop system:  a PD controller was designed: u = - KX + Gr      , where K = [𝐾𝑝   𝐾𝑑] 

𝑋̇ = (A – BK) X + BGr      →       𝑋̇ =  [
0 1

−(
2𝐾𝐼∘

2

𝑚𝑍∘
3) − (

2𝐾𝐼∘

𝑚𝑍∘
2)𝐾𝑝 −(

2𝐾𝐼∘

𝑚𝑍∘
2)𝐾𝑑

]X    +  [
0

(
2𝐾𝐼∘

𝑚𝑍∘
2)𝐺

]r 

y = (C – DK) X + DGr      →         y =  [1    0]X   +  [0]r 

Closed Loop characteristic polynomial:  

|sI – (A – BK)| =  [
𝑠 −1

(
2𝐾𝐼∘

2

𝑚𝑍∘
3) + (

2𝐾𝐼∘

𝑚𝑍∘
2)𝐾𝑝 𝑠 + (

2𝐾𝐼∘

𝑚𝑍∘
2)𝐾𝑑

] = 𝑠2 + ((
2𝐾𝐼∘

𝑚𝑍∘
2)𝐾𝑑) 𝑠 +  (

2𝐾𝐼∘
2

𝑚𝑍∘
3) + (

2𝐾𝐼∘

𝑚𝑍∘
2)𝐾𝑝  

on comparing with the desired characteristic polynomial 

2𝜁𝑑𝑒𝑠𝜔𝑛𝑑𝑒𝑠 = (
2𝐾𝐼∘

𝑚𝑍∘
2)𝐾𝑑 → 𝐾𝑑 = 

𝜁𝑑𝑒𝑠𝜔𝑛𝑑𝑒𝑠
𝐾𝐼∘

𝑚𝑍∘
2

;           𝜔𝑛
2 = (

2𝐾𝐼∘
2

𝑚𝑍∘
3) + (

2𝐾𝐼∘

𝑚𝑍∘
2)𝐾𝑝 → 𝐾𝑝 = 

𝜔𝑛𝑑𝑒𝑠
2 −

2𝐾𝐼∘
2

𝑚𝑍∘
3  

2𝐾𝐼∘

𝑚𝑍∘
2

 

Using real life values: m = 2250 Kg, K = 0.01, 𝑍∘ = 0.04 m, & formula (𝐼∘
2 = 

𝑚𝑍∘
2

𝐾
) → 𝐼∘ = 60 A 

Design Specifications for controller: settling time 𝑡𝑠 = 0.24 sec, percent overshoot = 4 %      

𝜁 = √
(𝑙𝑛

% 𝑂.𝑆.

100
)2

𝜋2+ (𝑙𝑛
%𝑂.𝑆.

100
)2

  = 0.716         𝜔𝑛 = 
4

0.24 ×0.716
  = 23.277 

𝐾𝑑 = 
𝜁𝜔𝑛
𝐾𝐼∘

𝑚𝑍∘
2

 = 99.99                 𝐾𝑝 = 
𝜔𝑛
2−

2𝐾𝐼∘
2

𝑚𝑍∘
3  

2𝐾𝐼∘

𝑚𝑍∘
2

 = 126.789 

𝑦𝑓𝑖𝑛𝑎𝑙
𝑂𝐿  = 

𝑍∘

𝐼∘
 = 

0.04

60
 = 6.67 × 10−4 
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𝑦𝑓𝑖𝑛𝑎𝑙
𝐶𝐿  = 𝑦𝑓𝑖𝑛𝑎𝑙

𝑂𝐿  = 𝐻𝐶𝐿(0) = -C(𝐴 − 𝐵𝐾)−1BG       →    G =  
𝑦𝑓𝑖𝑛𝑎𝑙
𝑂𝐿

−C(𝐴−𝐵𝐾)−1B
 = 1.095 

Using the values obtained above in a MATLAB code (added in the appendix), figure 3 shows 

the dynamic response of the open-loop vs closed-loop system, given a unit step input: 

 

Figure 3. Dynamic response of the open-loop vs closed-loop system 

Conclusions and discussions 

A MagLev train’s vertical dynamics result in a non-linear system. Upon linearizing, the 

linearized system is controllable, observable, and marginally stable. The open-loop system was 

marginally stable (oscillating about the steady state value). A PD Controller was used to 

stabilize the linearized system asymptotically, and realistic design parameters from relevant 

studies were used.  MATLAB Simulation does verify that the system was stabilized according 

to the parameters (0.24 second settling time and 4% overshoot). A major challenge in executing 

this project was determining the stability of the original non-linear system, as methods 

discussed in the class could not conclusively determine if the original non-linear system was 

marginally stable or unstable. Major learnings include modeling a real-world dynamic system 

to state space form, examining its properties, and stabilizing it using a controller. Next Steps 

would be exploring PID controllers that account for steady-state error caused by changes in 

overall mass of the train. Also, exploring and controlling the other two dynamics of the MagLev 

train. 
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Appendix: MATLAB Code 

close all; clc;  
% System parameters 
m = 2250; 
k = 0.01; 
Z_not = 0.04; 
I_not = 60; 
 
% Controller gains 
G = 1.095; 
k_d = 99.99; 
k_p = 126.789; 
 
% Plot of Open loop vs closed loop System 
s = tf('s'); 
H_OL = ((2*k*I_not)/(m*Z_not^2))/(s^2 + (2*k*I_not^2)/(m*Z_not^3)); 
[y_OL,t1]=step(H_OL,10); 
H_CL = ((G*2*k*I_not)/(m*Z_not^2))/(s^2 + (2*k*I_not*k_d*s)/(m*Z_not^2) + 
(2*k*I_not^2)/(m*Z_not^3) + (2*k*I_not*k_p)/(m*Z_not^2)); 
[y_CL,t2]=step(H_CL,10); 
 
figure 
plot(t1,y_OL,'b','LineWidth',2) 
hold 
plot(t2,y_CL,'r','LineWidth',2) 
xlabel('$t$ (s)', 'Interpreter','latex') 
ylabel('$y$', 'Interpreter','latex') 
legend('Open-Loop','Closed-Loop') 
set(gca,'linewidth',2,'fontsize',20,'fontname','Times'); 
set(gcf,'color','white') 


