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Introduction

Trains are one of the primary means of land transport in the world, as they are energy efficient
and reach high speeds compared to their counterparts. However, Conventional trains waste
considerable energy due to the friction between the wheels and the track. To reduce this energy
loss, Magnetic Levitation Trains were invented, where compartments are elevated above the

tracks with no physical contact using magnetism principles.

Due to the nature of this system and its dynamics, it is not fully stable on its own. Therefore,
to successfully implement this levitation idea on the trains, numerous control techniques are
used. There are three main dynamics in this system which can be decoupled for simplicity. First
is levitation, where an electromagnet is used either to repel or attract the train body to levitate
it above tracks. Second is propulsion, where linear induction motors are used to propel the
train. Third is guidance, where opposite pole magnets on the sides keep the train centered in
the lateral direction. Figure 1 below shows all three dynamics with respect to the train

compartments:

Figure 1. Dynamics of a Maglev Train [1][2]

In this project, researchers focused on the levitation dynamics (vertical axis). In this axis, an

electromagnet is attached to the undercarriage of the train and a permanent magnet to the track;



an upward magnetic force is generated to levitate the compartment; this force is dependent on
the input current and the distance between the magnets. Using a specific current input, the
compartment can be levitated precisely above a certain height. Subsequent sections discuss this
single-input single-output (SISO) system’s modeling, analysis of properties, controller design

and simulation, and conclusions and discussions.
Modeling

The first step in modeling this system is representing it as a free-body diagram (FBD). Figure
2 shows the FBD of the system; there are two forces in the vertical direction: the force of

gravity (Fg=mg) and the opposing magnetic force (Fm). Fi is given by this formula:
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E, where K = NTM [3]

N — No of turns in electromagnet coil
U, — Permeability of free space
I — Current flowing through electromagnet coil
A — Effective Area of the magnet pole face

Z — Air gap distance between train and guideway
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Figure 2. Levitation Axis FBD [3]

Equations of motion were derived from the FBD using Newton’s second law:
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Subsequently, the state space model was constructed by taking: X; =Z, X, = Z, & input u =1
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Since the resulting state-space representation is highly non-linear, the system was linearized

about an equilibrium levitation point using Taylor series expansion:
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Analysis of properties

After the sate-space modeling, important properties of the system, including controllability,

observation, internal stability, and BIBO stability, were determined as follows:

Controllability

P=[B AB]
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Observability
Q= [CCA]
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Since the determinant of both P and Q matrices is not equal to zero, the system is both
controllable and observable. The internal stability of the system was determined using
Lyapunov’s indirect method, and the BIBO stability was determined using the roots of the

transfer function as follows:

Lyapunov’s Indirect Method —  check the real part of the eigenvalues of system matrix A
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Real part of eigenvalue is zero — The linearized model is marginally stable — Also, the

stability of the actual non-linear system is unknown by this method.

BIBO Stability: The open Loop transfer function G(s) for the state space system is given by:
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Since the transfer function’s poles have no real parts, the system is not BIBO stable.
Controller Design and Simulation Results

Since the linearized system is marginally stable, there needs to be a state feedback control that
actively controls the system and stabilizes it, given certain design specifications. As learned in
the coursework, a PD controller was chosen. The first step in designing a PD controller is

determining the open loop dynamic response of the system, which is as follows:
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Standard form, G(s) =
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Percent Overshoot:  %0S = e V" x 100% = €® x 100% = 100%

Settling Time: T, = {% = oo (system never settles)

For closed loop system: a PD controller was designed: u=-KX + Gr , where K = [Kp Kd]

0 1 0
X =(A-BK) X +BG X = 2KI? 2K1, 2KI, X + |[2KL
(A-BlyxBor = l— (G) ~ Gpky ~CoKa [(ng) Glf

y=(C-DK)X+DGr - y=[1 0]X + [O]r
Closed Loop characteristic polynomial:

S -1

SEASBOE & + &k, +(2’“>Kdl 52+<(%)K> )+ Gl

on comparing with the desired characteristic polynomial

2 2K1?

{deswny 2 2KI? des” mz3

Z(deswndes = (mzz)Kd Kq;= Tes; wy, = ( Z3) ( ZZ)K - 2k,
mZo2 mZo2

2
Using real life values: m = 2250 Kg, K=0.01, Z, = 0.04 m, & formula (12 = mTZ") - [,=60A

Design Specifications for controller: settling time t; = 0.24 sec, percent overshoot =4 %
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Using the values obtained above in a MATLAB code (added in the appendix), figure 3 shows

the dynamic response of the open-loop vs closed-loop system, given a unit step input:

x 10

<10 sk
T T T T T T T

— Open-Loop
|— Closed-Loop)

£

LR

1 2 3 4 5 6 7 8 9 0.5 1.5
t(s) t(s)

Figure 3. Dynamic response of the open-loop vs closed-loop system

Conclusions and discussions

A Maglev train’s vertical dynamics result in a non-linear system. Upon linearizing, the
linearized system is controllable, observable, and marginally stable. The open-loop system was
marginally stable (oscillating about the steady state value). A PD Controller was used to
stabilize the linearized system asymptotically, and realistic design parameters from relevant
studies were used. MATLAB Simulation does verify that the system was stabilized according
to the parameters (0.24 second settling time and 4% overshoot). A major challenge in executing
this project was determining the stability of the original non-linear system, as methods
discussed in the class could not conclusively determine if the original non-linear system was
marginally stable or unstable. Major learnings include modeling a real-world dynamic system
to state space form, examining its properties, and stabilizing it using a controller. Next Steps
would be exploring PID controllers that account for steady-state error caused by changes in
overall mass of the train. Also, exploring and controlling the other two dynamics of the MagLev

train.
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Appendix: MATLAB Code

close all; clc;
% System parameters

m = 2250;

k = 0.01;

Z_not = 0.04;

I _not = 60;

% Controller gains
G = 1.095;

k_d = 99.99;

k_p = 126.789;

% Plot of Open loop vs closed loop System

s = tf('s");

H OL = ((2*k*I_not)/(m*Z_not~2))/(s*2 + (2*k*I_not”2)/(m*Z_not”3));
[y_OL,t1]=step(H_OL,10);

H_CL = ((G*2*k*I_not)/(m*Z_not~2))/(s"2 + (2*k*I_not*k_d*s)/(m*Z_not"2) +
(2*k*I_not”2)/(m*Z_not”3) + (2*k*I_not*k_p)/(m*Z_not”2));
[y_CL,t2]=step(H_CL,10);

figure

plot(tl,y OL,'b", 'LineWidth"',2)

hold

plot(t2,y CL,'r', 'LineWidth",2)

xlabel('$t$ (s)', 'Interpreter','latex')

ylabel('$y$', 'Interpreter','latex')

legend('Open-Loop', 'Closed-Loop")

set(gca, 'linewidth',2, 'fontsize',20, 'fontname', 'Times");
set(gcf, 'color', 'white")



