Fabrication of A 3D-Printed Robotic Arm With Kinematic
Modeling For Pick-And-Place Operations

1. Problem Statement

Modern robotic arms are integral in tasks ranging from industrial assembly to medical
procedures. This project aims to create a low-cost, programmable, and
anthropomorphic robotic arm capable of performing basic pick-and-place operations. By
integrating servo-based actuation and a Raspberry Pi controller, the goal is to
implement fundamental kinematic principles—both forward and inverse kinematics—to
enable the arm’s end-effector to reach designated positions accurately within its
workspace. Concepts learned during MAE 547—such as Denavit-Hartenberg (DH)
parameterization, workspace analysis, forward and inverse Kinematics—are now
integrated into a tangible system. By building this initial prototype, we not only reinforce
our understanding of these core robotic principles but also create a platform from which
we can evolve our work. Future improvements, such as introducing closed-loop
feedback, advanced trajectory planning, and more complex inverse kinematic solutions,
are natural next steps as we continue to grow our expertise beyond the scope of the
current class.

Objective

e Design, fabricate, and program a simple 3-DOF robotic arm (plus a gripper) using
a Raspberry Pi and servo motors to perform pick-and-place operations.

e Develop and utilize a defined configuration space to understand the arm’s
feasible workspace.
Apply forward and inverse kinematics for precise positioning of the end-effector.
Validate the system through simulations and real-world tests, and assess
accuracy, repeatability, and reliability.

2. Approach

2.1. Initial Design Rationale and Assumptions

The foundational concept for this robotic arm design was to strike a balance between
mechanical simplicity and meaningful complexity. By opting for a three-degree-of-freedom
(3-DOF) configuration—consisting of a base rotation, a shoulder joint, and an elbow joint—plus
an additional servo-driven gripper, the design remains manageable while still demonstrating
fundamental robotic motion principles. The relatively low dimensionality of this system limits the
complexity of the inverse kinematics calculations and controller logic, making it an ideal
educational platform for exploring core concepts in robotics without the overhead of more
intricate multi-joint systems.

Figure 1. Side view of arm

We also decided to simplify the inverse kinematics problem by orienting the base joint so that
the target point lies in a plane shared by the shoulder and elbow joints. Reducing what could be
a 3-DOF inverse kinematics challenge to a 2-DOF problem ensures that analytical solutions
remain tractable. This assumption provides a clearer path to success for initial testing and
demonstration, serving as a foundation that can be expanded as future improvements—such as
adding more degrees of freedom or sophisticated sensors—are introduced.

2.2. Hardware Setup

The following components were utilized in manufacturing the robotic arm:

1. Raspberry Pi: Serves as the primary controller, running Python scripts to
generate PWM signals and execute kinematic calculations.

2. Servo Motors (3 x Hitec MG5465 + 1 x Micro Servo): Provide actuation at the
base, shoulder, elbow, and gripper joints. The MG5465 servos handle larger
loads, while the micro servo suffices for the gripper’s lighter task.

3. Power Supply: A stable DC power source capable of delivering 5 V at 5 A to
handle peak currents drawn by servos under load.

4. Robot Arm Structure: Fabricated using PLA and PETG for a balance between
rigidity and weight. Link lengths were chosen to ensure the applied torques would

be within the servos’ acceptable limits. The gripper’s jaws use parallel links
attached to the micro servo to actuate.

Figure 2. Hardware setup of-DOF Anthropomorphic Robotic Arm

All the links and gripper parts were designed in SolidWorks and a basic assembly and
motion study was performed to demonstrate all the parts assembled and joint
movements. The figure below shows the SolidWorks Assembly:

Figure 3. SolidWorks Assembly

The assembly and initial testing of the robotic arm follows this order:

1. Mechanical Assembly: Each servo is secured in place using bolts and heat set
inserts. Links then attach to the servo’s axle using bolts. The gripper is attached
to the forearm using bolts and heat set inserts as well.

2. Electrical Connections: Servos are wired to the Raspberry Pi's GPIO pins,
ensuring common ground and stable power. An external power supply provides
the power to drive the servos.

3. Initial Testing: Each servo was tested to check that it responds to basic PWM
signals. We then attached the links to the servo axle and verified that the arm
indeed reaches the end points of the calculated workspace.

2.3. Configuration Space and Workspace Definition

2.3.1. Joint Angle Limits and Servo Constraints

While the servos are rated for approximately 180° rotation, practical testing revealed an
effective range of ~160° due to mechanical constraints and non-linearities. The
Raspberry Pi's PWM resolution and servo response also affect achievable accuracy,
potentially limiting the smallest repeatable angle increment to ~2°.

2.3.2. Defining Joint Angles

Let 6, be the base rotation angle (about z-axis), 8, the shoulder angle (pitch), and 8; the
elbow angle (pitch). The gripper (6,) is a simple open/close command rather than a
continuous angle. Approximate ranges:

e 0,:0°to180°
e 0, 0°to 180°
e 0, -90° to 90°

2.3.3. Workspace Boundaries

By considering link lengths and joint limits, the maximum horizontal reach is about
30cm, and vertical reach is about 35cm.

Simulation tools through matlab help visualize reachable points. Preliminary simulations
confirm that the planned pick-and-place tasks (e.g., moving small items from a bin to a
target area) are achievable within these bounds

3-DOF Robotic Arm Workspace

Z-axis

X-axis B Vel

Figure 4. Workspace of the Robotic Arm

2.4. Kinematics Implementation

Using the Denavit-Hartenberg (DH) Convention with the shoulder joint as the base
frame we get the following DH Table:

Link No a a d 0
1 0 /2 L,=38.55 mm 0,
2 L,=120 mm 0 0 0,
3 L;=187.75 mm 0 0 03

From these parameters, construct homogeneous transformation matrices and multiply
sequentially to get the end-effector frame. In code, given (64, 6,, 6;), we can quickly

compute X, y, z coordinates.

300

200 i:.Y

X
100 :\
Z

N 0
-100
-200

3DOF Robot
-300

Figure 5. Initial position of Robotic arm created using DH table

2.4.1. Inverse Kinematics

Without simplification, a 3-DOF robotic arm’s inverse kinematic equations can yield
multiple solutions (up to four sets of angles), some of which may be physically
unattainable or cause joint collisions. By pre-aligning the base joint so that the target
lies within a vertical plane, the problem reduces to solving a planar 2D inverse
kinematics problem for the shoulder and elbow. Standard trigonometric relations (law of
cosines, sines) yield closed-form solutions for 6, and 6.

Approach:

e Compute projection of target point in the plane defined by 6,.
e Use geometry to find 6, and 65 angles that achieve the desired (x, y) position.
e If multiple solutions exist, select the one that is within permissible joint values.

With IK implemented on the Raspberry Pi, given a target (x, y, z), we solve for 8, (base
turn), then 8, and 63, and finally command the servos.

Pseudocode:

IK(pWx, pWy, pWz, L1, L2, L3):

BEGIN

Moving pWz from frame 1 to frame 2

pWz = pWz - L1; # This is to make calculations easier

We find possible values for theta 1 and pick the one that is valid for our
joint-space

thetal 1 = atan2 (pWy, pWx); # First solution for theta 1

thetal 2 atan2 (-pWy, -pWx); # Second solution for theta 1

Since theta 2 and theta 3 are dependent on each other, we calculate them
together

c3 = (PWx"2 + pWy"2 + pWz"2 - L2"2 - L3%2) / (2 * L2 * L3);
We have two possible values for sin(theta 3) so we check both

s3 pos = sqrt(l - c372);

s3_neg -s3_pos;

Now we use the two sine values to find the two possible valid theta 3 wvalues

theta3 1 = atan2(s3 pos, c3); % First solution for theta 3
theta3 2 = atan2(s3 neg, c3); 3% Second solution for theta 3
Finally, we use the theta 3 values to find the theta 2 values

theta2 1 = atan2(pWz,sqrt (pWx"2 + pWy~2)) - atan2((L3*sin(theta3_1)), (L2 +
L3*cos (theta3 1)));

theta2 2 = atan2(pWz,sqrt (pWx"2 + pWy~2)) - atan2((L3*sin(theta3 2)), (L2 +
L3*cos (theta3 2)));

We need a combination of theta 2 and theta 3 values where both are within
joint limits

IF theta2 1 >= 0 && theta2 1 <= pi && theta3 1 >= -pi/2 && thetal3 1 <= pi/2
THEN

theta2 = theta2 1;

#

theta3 = theta3 1;

ELSEIF theta2 2 >= 0 && theta2 2 <= pi && theta3 2 >= -pi/2 && theta3 2 <= pi/2
THEN

theta2 = theta2 2;

theta3

theta3 2;
ELSE # If this happens, both theta 2 and theta 3 are invalid

Return
ENDIF
Finally, we pick the theta 1 value. If the target is in the positive half of
the robot-target plane, we can use the theta 2 and theta 3 values we have
already found. If the target is in the negative half, we need to change #
theta 2 and theta 3 to accommodate for this.
IF thetal 1 >= 0 && thetal 1 <= pi THEN

thetal = thetal 1;
ELSEIF thetal 2 >= 0 && thetal 2 <= pi THEN

thetal = thetal 2;

theta2 = pi-theta2; # New theta 2 becomes pi-theta 2

theta3 -theta3; # New theta 3 becomes -theta 3
ELSE

return;
ENDIF

Return [thetal, theta2, theta3]

END

2.5 Raspberry Pi (Python) Code Implementation
2.5.1. Libraries and Setup

To control the servos and perform kinematic calculations, several Python libraries and
modules are used:

e helper.servo: A custom module containing functions to abstract servo
angle-to-PWM conversions, initialization routines, and servo actuation
commands.

e time.sleep: Pauses the code execution to allow for servo movement and
timing-based operations.

e numpy (np): Provides mathematical functions, array operations, and
trigonometric utilities required for inverse kinematics calculations.

e gpiozero.pins.lgpio and lgpio: Low-level libraries enabling precise and
reliable GPIO pin control, facilitating stable PWM signals for the servos on the
Raspberry Pi.

2.5.2. Controls Implementation

e Class Robot: This class is defined in the file main.py. The purpose of this class
is to hold information about the robot, i.e. the link lengths, that we need to
perform the inverse kinematics operation, which also lies in this class.

e Inverse Kinematics Function: Input desired (X, y, z), compute joint angles. This
computation happens in main.py, under the class Robot. It gives a valid
combination of joint angles that can be attained by the robot within joint limits.

e Command Servos: Convert joint angles to corresponding PWM duty cycles.
Account for servo offset calibration (e.g., 8, = 0 might not correspond to a 1.5 ms
pulse precisely). This code is defined in helper/servo.py.

2.5.3. Testing and Calibration

e Static Points: Move the arm to a series of predefined points along known
coordinates. Measure the end-effector position with a ruler or a camera-based
system.

e lterative Adjustments: Apply small angle offsets to correct for mechanical
misalignments. Document final calibration values.

e Repeatability Trials: Run the arm to the same coordinate multiple times to
assess positional repeatability and servo backlash effects.

3. Results: Simulation and Results Visualization
3.1. Simulation Results

Plots generated in MATLAB or Python show a dense cluster of achievable end-effector
positions, forming a workspace region. Example target points (e.g., [placeholder: (10
cm, 5 cm, 0 cm)]) yield valid solutions.

FK validation: Input known joint angles into the FK model and compare the computed
position against manually measured positions. Deviations of less than [placeholder:
e.g., 5 mm] were observed in most tested cases.

3.2. Real-World Testing

The arm successfully placed small objects (e.g., 30 by 30mm plastic block) from a start
position to a target area. Video evidence shows the arm rotating the base servo to face
the target and adjusting the shoulder and elbow to reach it.

The gripper, though simple, reliably opened and closed around small, lightweight
objects without significant slip.

3.3.Inverse Kinematics Testing

Several random target points were chosen, and their corresponding joint angles were
computed via IK. Running FK on these angles returned target coordinates. This
closed-loop verification in simulation and in practice confirmed that our kinematic
models were sound.

4. Discussion

4.1. Analysis of Discrepancies

While simulation results indicated near-perfect motion, real-world tests introduced
non-idealities:

e Servo jitter and limited PWM resolution led to minor, unpredictable position
errors.

e Mechanical tolerances and slight misalignments between joints caused the
end-effector position to deviate from ideal values.

4.2. Challenges and Limitations

e Limited servo resolution: Although commanded for full rotation and precise
increments, actual movement fell short of the theoretical range.

e Backlash: Gearing within the servos introduced small position errors that weren’t
fully modeled.

e Static open-loop control: Without feedback sensors, the system cannot correct
positional errors that accumulate over time.

4.3. Future Improvements

e Closed-Loop Feedback: Adding encoders or Hall-effect sensors would allow the
system to measure actual joint angles and correct errors in real-time.

e Enhanced Trajectory Planning: Instead of simple point-to-point moves,
implement trajectory planning (e.g., cubic spline interpolation) to achieve
smoother and more predictable motions.

e Increased DOFs: Adding a wrist joint or more complex gripper could expand the
range of achievable tasks and test more advanced IK algorithms.

e Material and Mechanical Refinement: More rigid materials and precision
machining could reduce tolerances and enhance positional accuracy.

500
400 -
300
200

100
400

0 +——

500 e

Figure 6. 3-DOF Robot Trajectory Simulation With Dynamic Path

5. References

Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2010). Robotics: Modelling, Planning and
Control. Springer Science & Business Media.
Petercorke. (n.d.). GitHub - petercorke/robotics-toolbox-matlab: Robotics Toolbox for MATLAB.

GitHub. https://github.com/petercorke/robotics-toolbox-matlab

Contribution Claim in Group No. 14

Member Name

Role in the project
(Clearly describe each team member’s role for the project)

Contribution percentage
(The sum of all members’
contributions should be

100%)
Sukhpreet Singh Designing and Printing 3D model of a Robotic Arm 20
Nolastname
Vishavijit Singh Khinda Formulating Analytical Inverse Kinematic solution 20
Vinamr Arya Designing and Printing 3D model of a Robotic Arm 20
Vatsin Ninad Shah Using Python to implement Algorithms on the Raspberry pi 20
Dilli Babu Kalluru Calculating Workspace of the robotic arm 20

Signature by all group members:

Sukhpreet, Vishavijit, Vinamr, Vatsin, Dilli Babu

(By signing, it means you have made the consensus about everyone’s contribution percentage)

